Genome editing for animal health

Dr Christine Tait-Burkard The Roslin Institute, The University of Edinburgh

4th International Workshop on Regulatory Approaches for Agricultural Applications

Genome editing for disease resistance

Dr Christine Tait-Burkard The Roslin Institute, The University of Edinburgh

4th International Workshop on Regulatory Approaches for Agricultural Applications

Genome editing for disease resistance Finding targets

Genome editing for disease resistance Finding targets

Genome editing for PRRSV resistance **Porcine Reproductive and Respiratory Syndrome (PRRS)**

All pigs Respiratory distress, Fever, inappetence

Suckling piglets Diarrhea, severe respiratory distress Up to 100% lethality (strain dependent)

Pregnant Sows Complete abortion or death of fetuses *in utero*

→ Animals suffering from disease
 → Loss of animals / Growth / Food waste in the production chain

→ Viral infection incapacitates immune system leaving the door open for secondary infections with bacteria and pathogens

Genome editing for PRRSV resistance The PRRSV panzootic

Genome editing for PRRSV resistance

The Background – PRRSV-host interaction

Genome editing for PRRSV resistance The Solution – Excising domain 5

Genome editing for PRRSV resistance The Result – Healthy, resistant pigs

Experimental set-up

- 4x ΔSRCR5 & 4x wild type animals at age 7-8 weeks
- Co-housing of animals to allow natural transmission
- Intranasal inoculation

Burkard et al., 2018, Journal of Virology

- Improved animal welfare
- No secondary bacterial / pathogen infections
 Less antibiotics use
- No shedding / shielding other animals / farms

Genome editing for disease resistance Why genome editing?

Proudfoot, Lillico, Tait-Burkard, 2019, Animal Frontiers

Genome editing for disease resistance **Risks, Benefits and Regulation**

Tolerant

- + Highly likely to react to live att. vaccines
- High pathogen load
- High evolution rate

Resilient

- + Improved production
- + Improved welfare
- Likely to somewhat react to LA vaccines
- ± Reduced pathogen load
- ± Reduced evolution rate

- + Improved production
- + Improved welfare
- + No pathogen load
- + Low evolution rate
- ± Unlikely to react to LA vaccines
- More difficult to find targets

Genome editing for disease resistance **Risks, Benefits and Regulation**

- Regulating traits vs. regulating methods?
 - Multiple technologies can lead to the same outcome
- Co-evolving methodology
 - RNA vaccines (self-amplifying)
 - Affordable antivirals
 - Antimicrobial alternatives
- Genome editing is one tool in the box
 - Transgenesis may be a solution too

Acknowledgments

Tait-Burkard Lab

- Sarah Fletcher
- Seema Jasim
- Marie O'Shea
- Elle McLuskey
- James Owen
- Holly Kerr
- Izzy Hoskins
- Andrew Hanton
- Alison Daniels
- Amanda Warr
- Vera van Vliet

- Simon Lillico
- Chris Proudfoot
- Alan Archibald
- Tahar Ait-Ali

ullet

- Bruce Whitelaw
 - Tanja Opriessnig

Funding sources

Biotechnology and Biological Sciences Research Council

The Teams

